Phase precipitation and isothermal crystallization kinetics of FeZrB amorphous alloy
The crystallization process of Fe78ZrTBls (at%) amorphous ribbon was investigated by Xray diffraction (XRD), differential scanning calorimetry and scanning electron microscopy (SEM). The fully amorphous structure of asquenched (Aq) ribbons was confirmed by XRD pattern. The saturation magnetization (...
Gespeichert in:
Veröffentlicht in: | Advances in manufacturing 2013-09, Vol.1 (3), p.251-257 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The crystallization process of Fe78ZrTBls (at%) amorphous ribbon was investigated by Xray diffraction (XRD), differential scanning calorimetry and scanning electron microscopy (SEM). The fully amorphous structure of asquenched (Aq) ribbons was confirmed by XRD pattern. The saturation magnetization (Ms) and Curie tem perature of the Aq ribbon were measured as 124.3 (A.mZ)&g and 305 ℃ with vibrating sample magnetometer (VSM), respectively. When the ribbons was annealed at 550 ℃ near the first onset temperature (Txl = 564.9 ℃), the Ms was increased by 17 %, which was caused by the formation of a dual phase structure. The isothermal crystallization kinetics and crystallization mechanism of primary ctFe phase in the dual phase structure were studied by Arrhenius and JohnsonMehlAvramiKolmogorov equations respectively. The results showed that the crystallization of Fe phase was a diffusioncontrolled surface nucleation growth process, and the nucleation rate decreased with longer crystallization time. |
---|---|
ISSN: | 2095-3127 2195-3597 |
DOI: | 10.1007/s40436-013-0033-2 |