Modeling Water Table Fluctuations in Anisotropic Unconfined Aquifer Due to Time Varying Recharge from Multiple Heterogeneous Basins and Pumping from Multiple Wells

Prediction of water table fluctuations in response to proposed schemes of recharging and pumping is important to make judicious selection of an appropriate scheme out of many schemes to achieve the preset objective of sustainable management of groundwater resources without compromising the regional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2015-03, Vol.29 (4), p.1019-1030
Hauptverfasser: Manglik, A., Rai, S. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prediction of water table fluctuations in response to proposed schemes of recharging and pumping is important to make judicious selection of an appropriate scheme out of many schemes to achieve the preset objective of sustainable management of groundwater resources without compromising the regional water balance. This is achieved by solving groundwater flow equation with suitable initial and boundary conditions, aquifer parameters, and recharge/pumping parameters. Earlier, analytical solutions were developed to predict water table fluctuations in aquifer due to time varying recharge rate from multiple basins considering spatially uniform recharge rate for the entire basin area. However, the recharge rate may vary spatially within a single basin due to many factors such as variation in the height of water column above the base of the basin, degree of siltation of the base of the basin etc. In the present work, we develop an analytical solution for modeling of water table fluctuations in an anisotropic aquifer due to intermittently applied spatio-temporally varying rate of recharge from multiple basins and pumping from multiple wells arbitrarily distributed within the model domain. In the present solution, wells are treated as point sources, which helps in reducing numerical artifacts. Some earlier obtained analytical solutions are the special cases of the present solution.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-014-0857-y