Preliminary Monte Carlo simulations of linear accelerators in Time-of-Flight Compton Scatter imaging for cargo security

The economic impact of illicit trade is in the trillions of dollars per year, with a proportion of this trade concealed within cargo containers. The interdiction of this trade relies upon efficient and effective external screening of cargo containers, typically using x rays. The present work introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crime science 2013-06, Vol.2 (1), p.1, Article 2
Hauptverfasser: Calvert, Nick, Morton, Edward J, Speller, Robert D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The economic impact of illicit trade is in the trillions of dollars per year, with a proportion of this trade concealed within cargo containers. The interdiction of this trade relies upon efficient and effective external screening of cargo containers, typically using x rays. The present work introduces a technique of x-ray screening that aims to increase the efficiency and effectiveness of x-ray screening. Traditional X-ray screening of cargo containers is performed using high-energy (MV) transmission imaging or low-energy (kV) Compton scatter imaging to provide two-dimensional images. Two-dimensional images can contain complex, overlapping objects and require significant experience and time to interpret. Time-of-Flight information can be used in conjunction with Compton scatter imaging to provide information about the depth of each Compton scatter interaction, leading to three-dimensional images, reducing false positives and image analysis time. The expected Time-of-Flight from photons scattered back from a set of objects is well defined when the photons are produced with a delta-type (infinitely narrow) pulse duration, however, commercially available linear accelerators used for cargo screening typically have pulse widths of the order of 1 μs. In the present work, the possible use of linear accelerators for Time-of-Flight Compton scatter imaging is investigated using a mixture of analytic and Monte Carlo methods. Ideal data are obtained by convolving a number of wide x-ray pulses (up to 5 μs) with the expected Time-of-Flight from a set of objects using a delta-type pulse. Monte Carlo simulations, using Geant4, have been performed to generate x-ray spectra produced by a linear accelerator. The spectra are then used as the input for detailed Monte Carlo simulations of the Time-of-Flight of photons produced by a single linear accelerator pulse scattering back from a set of objects. Both ideal and Monte Carlo data suggest that Time-of-Flight information can be recovered from a wide linear accelerator pulse, provided that the leading and falling edge of the pulse are sharp. In addition, it has been found that using a linear accelerator leads to double the amount of Time-of-Flight information as both the leading and falling edge are utilised (unlike for a delta-type pulse).
ISSN:2193-7680
2193-7680
DOI:10.1186/2193-7680-2-2