The 2-edge geodetic number and graph operations

For a connected graph G  = ( V , E ) of order n  ≥ 2, a set is a 2- edge geodetic set of G if each edge lies on a u - v geodesic with d ( u , v ) = 2 for some vertices u and v in S . The minimum cardinality of a 2-edge geodetic set in G is the 2- edge geodetic number of G , denoted by eg 2 ( G ). It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of mathematics 2012-06, Vol.1 (2), p.241-249
Hauptverfasser: Santhakumaran, A. P., Ullas Chandran, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a connected graph G  = ( V , E ) of order n  ≥ 2, a set is a 2- edge geodetic set of G if each edge lies on a u - v geodesic with d ( u , v ) = 2 for some vertices u and v in S . The minimum cardinality of a 2-edge geodetic set in G is the 2- edge geodetic number of G , denoted by eg 2 ( G ). It is proved that for any connected graph G , β 1 ( G ) ≤ eg 2 ( G ), where β 1 ( G ) is the matching number of G . It is shown that every pair a , b of integers with 2 ≤ a  ≤ b is realizable as the matching number and 2-edge geodetic number, respectively, of some connected graph. We determine bounds for the 2-edge geodetic number of Cartesian product of graphs. Also we determine the 2-edge geodetic number of certain classes of Cartesian product graphs. The 2-edge geodetic number of join of two graphs is obtained in terms of the 2-edge geodetic number of the factor graphs.
ISSN:2193-5343
2193-5351
2193-5351
DOI:10.1007/s40065-012-0016-3