Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities
Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinit...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2012-12, Vol.43 (13), p.5271-5278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5278 |
---|---|
container_issue | 13 |
container_start_page | 5271 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 43 |
creator | Low, R. J. Qian, M. Schaffer, G. B. |
description | Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by Y
2
O
3
appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks. |
doi_str_mv | 10.1007/s11661-012-1328-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1650605577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3577477091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b150204dc94d73ac700231949334046ec6dfb081f81bc9c08cb4c7f06ea3c3803</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOKc_wLuAeBk9adKkvRzDj8FgF5sXghDSNN0ytrYmmR__3pQO8carnMDzvufwJMk1gTsCIO49IZwTDCTFhKY5Lk6SEckYxaRgcBpnEBRnPKXnyYX3WwAgBeWj5G1pm2CcbdaordHKBtXYwx592rBBryG4_rP4spVBk6qywbaNR3XrUNgYtNTqwzTrY3a62bWxx6DZvju4iBp_mZzVaufN1fEdJy-PD6vpM54vnmbTyRxrynjAJckgBVbpglWCKi0AUhrvLihlwLjRvKpLyEmdk1IXGnJdMi1q4EZRTXOg4-Rm6O1c-34wPshte3BNXCkJz4BDlgkRKTJQ2rXeO1PLztm9ct-SgOwlykGijBJlL1EWMXN7bFZeq13tVKOt_w2mXHAmRBa5dOB817s07s8F_5b_AC4RgQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650605577</pqid></control><display><type>article</type><title>Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities</title><source>SpringerNature Journals</source><creator>Low, R. J. ; Qian, M. ; Schaffer, G. B.</creator><creatorcontrib>Low, R. J. ; Qian, M. ; Schaffer, G. B.</creatorcontrib><description>Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by Y
2
O
3
appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-012-1328-9</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Powder metallurgy ; Powder metallurgy. Composite materials ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; Sintering ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2012-12, Vol.43 (13), p.5271-5278</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b150204dc94d73ac700231949334046ec6dfb081f81bc9c08cb4c7f06ea3c3803</citedby><cites>FETCH-LOGICAL-c346t-b150204dc94d73ac700231949334046ec6dfb081f81bc9c08cb4c7f06ea3c3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-012-1328-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-012-1328-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26764775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Low, R. J.</creatorcontrib><creatorcontrib>Qian, M.</creatorcontrib><creatorcontrib>Schaffer, G. B.</creatorcontrib><title>Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by Y
2
O
3
appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Powder metallurgy</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>Sintering</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhosoOKc_wLuAeBk9adKkvRzDj8FgF5sXghDSNN0ytrYmmR__3pQO8carnMDzvufwJMk1gTsCIO49IZwTDCTFhKY5Lk6SEckYxaRgcBpnEBRnPKXnyYX3WwAgBeWj5G1pm2CcbdaordHKBtXYwx592rBBryG4_rP4spVBk6qywbaNR3XrUNgYtNTqwzTrY3a62bWxx6DZvju4iBp_mZzVaufN1fEdJy-PD6vpM54vnmbTyRxrynjAJckgBVbpglWCKi0AUhrvLihlwLjRvKpLyEmdk1IXGnJdMi1q4EZRTXOg4-Rm6O1c-34wPshte3BNXCkJz4BDlgkRKTJQ2rXeO1PLztm9ct-SgOwlykGijBJlL1EWMXN7bFZeq13tVKOt_w2mXHAmRBa5dOB817s07s8F_5b_AC4RgQI</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Low, R. J.</creator><creator>Qian, M.</creator><creator>Schaffer, G. B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20121201</creationdate><title>Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities</title><author>Low, R. J. ; Qian, M. ; Schaffer, G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b150204dc94d73ac700231949334046ec6dfb081f81bc9c08cb4c7f06ea3c3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Powder metallurgy</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>Sintering</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, R. J.</creatorcontrib><creatorcontrib>Qian, M.</creatorcontrib><creatorcontrib>Schaffer, G. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, R. J.</au><au>Qian, M.</au><au>Schaffer, G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>43</volume><issue>13</issue><spage>5271</spage><epage>5278</epage><pages>5271-5278</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by Y
2
O
3
appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-012-1328-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2012-12, Vol.43 (13), p.5271-5278 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1650605577 |
source | SpringerNature Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Exact sciences and technology Materials Science Metallic Materials Metals. Metallurgy Nanotechnology Powder metallurgy Powder metallurgy. Composite materials Production techniques Sintered metals and alloys. Pseudo alloys. Cermets Sintering Structural Materials Surfaces and Interfaces Thin Films Titanium |
title | Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sintering%20of%20Titanium%20with%20Yttrium%20Oxide%20Additions%20for%20the%20Scavenging%20of%20Chlorine%20Impurities&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Low,%20R.%20J.&rft.date=2012-12-01&rft.volume=43&rft.issue=13&rft.spage=5271&rft.epage=5278&rft.pages=5271-5278&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-012-1328-9&rft_dat=%3Cproquest_cross%3E3577477091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650605577&rft_id=info:pmid/&rfr_iscdi=true |