Simultaneous Vision-Based Shape and Motion Analysis of Cells Fast-Flowing in a Microchannel
This paper proposes a novel concept for simultaneous cell shape and motion analysis in fast microchannel flows by implementing a multiobject feature extraction algorithm on a frame-straddling high-speed vision platform. The system can synchronize two camera inputs with the same view with only a tiny...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2015-01, Vol.12 (1), p.204-215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel concept for simultaneous cell shape and motion analysis in fast microchannel flows by implementing a multiobject feature extraction algorithm on a frame-straddling high-speed vision platform. The system can synchronize two camera inputs with the same view with only a tiny time delay on the sub-microsecond timescale. Real-time video processing is performed in hardware logic by extracting the moment features of multiple cells in 512 × 256 images at 4000 fps for the two camera inputs and their frame-straddling time can be adjusted from 0 to 0.25 ms in 9.9 ns steps. By setting the frame-straddling time in a certain range to avoid large image displacements between the two camera inputs, our frame-straddling high-speed vision platform can perform simultaneous shape and motion analysis of cells in fast microchannel flows of 1 m/s or greater. The results of real-time experiments conducted to analyze the deformabilities and velocities of sea urchin egg cells fast-flowing in microchannels verify the efficacy of our vision-based cell analysis system. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2013.2292583 |