Formation and Evaluation of Protective Layer over Magnesium Melt Under CO2/Air Mixtures

Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air that contains various concentrations of CO 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2015-02, Vol.46 (1), p.226-234
Hauptverfasser: Emami, Samar, Sohn, Hong Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air that contains various concentrations of CO 2 was investigated, including the kinetics of the oxide layer growth. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgO-C layer was formed under the test conditions. The thicknesses of this layer formed under CO 2 /air ranged from 500 nm to 12  μ m. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using SEM and EDS.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-014-0167-z