Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep
Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of crack...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2015-02, Vol.44 (2), p.761-769 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of cracks occurred. In the second stage, cracks propagated at a consistent rate. In the final stage, rapid extension of the cracks led directly to fracture of the joint. Three-dimensional volume-rendered images and fractographic analysis showed that the growth of macroscopic initial cracks at the interfaces dominated the creep fracture process. Initial failure of nano-silver sintered lap shear joints often occurred at interfacial nano-silver paste layers. Both the size and position of the initial interfacial cracks had significant effects on the final creep failure of the joints, and higher stresses led to greater porosity and earlier failure. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-014-3553-z |