A unique seasonal pattern in dissolved elemental mercury in the South China Sea, a tropical and monsoon-dominated marginal sea

A unique seasonal pattern in dissolved elemental mercury (DEM) was observed in the tropical monsoon‐dominated South China Sea (SCS). The DEM concentration varied seasonally, with a high in summer of 160 ± 40 fM (net evasion 580 ± 120 pmol m−2 d−1, n = 4) and a low in winter of 60 ± 30 fM (net invasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2013-01, Vol.40 (1), p.167-172
Hauptverfasser: Tseng, C. M., Lamborg, C. H., Hsu, S. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unique seasonal pattern in dissolved elemental mercury (DEM) was observed in the tropical monsoon‐dominated South China Sea (SCS). The DEM concentration varied seasonally, with a high in summer of 160 ± 40 fM (net evasion 580 ± 120 pmol m−2 d−1, n = 4) and a low in winter of 60 ± 30 fM (net invasion −180 ± 110, n = 4) and showed a positive correlation with sea surface temperature (SST). The elevated DEM concentration in summer appears mainly abiologically driven. In winter, the SCS acts as a sink of atmosphere Hg0 as a result of low SST and high wind of the year, enhanced vertical mixing, and elevated atmospheric gaseous elemental mercury. Annually, the SCS serves as a source of Hg0 to the atmosphere of 300 ± 50 pmol m−2 d−1 (385 ± 64 kmol Hg yr−1, ~2.6% of global emission in ~1% of global ocean area), suggesting high regional Hg pollution impacts from the surrounding Mainland (mostly China). A unique seasonal DEM exhibited a summer maximum and winter minimum The elevated DEM concentration in summer appears mainly abiologically driven High Hg emission rate data implies the SCS may receive environmental pollution
ISSN:0094-8276
1944-8007
DOI:10.1029/2012GL054457