Generic Node Removal for Factor-Graph SLAM

This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2014-12, Vol.30 (6), p.1371-1385
Hauptverfasser: Carlevaris-Bianco, Nicholas, Kaess, Michael, Eustice, Ryan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order to control the computational cost of graph optimization. GLC is able to produce a new set of linearized factors over the elimination clique that can represent either the true marginalization (i.e., dense GLC) or a sparse approximation of the true marginalization using a ChowLiu tree (i.e., sparse GLC). The proposed algorithm improves upon commonly used methods in two key ways: First, it is not limited to graphs with strictly full-state relative-pose factors and works equally well with other low-rank factors, such as those produced by monocular vision. Second, the new factors are produced in such a way that accounts for measurement correlation, which is a problem encountered in other methods that rely strictly upon pairwise measurement composition. We evaluate the proposed method over multiple real-world SLAM graphs and show that it outperforms other recently proposed methods in terms of Kullback-Leibler divergence. Additionally, we experimentally demonstrate that the proposed GLC method provides a principled and flexible tool to control the computational complexity of long-term graph SLAM, with results shown for 34.9 h of real-world indoor-outdoor data covering 147.4 km collected over 27 mapping sessions spanning a period of 15 months.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2014.2347571