On the Asymptotic of Homological Solutions to Linear Multidimensional Difference Equations

Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair (γ, ω), where γ is a homological k-dimensional cycle on the characteristic set of the equation and ω is a holomorphic form of degree k. This pair defines a so called homological solution by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Siberian Federal University. Mathematics & Physics 2014-01, Vol.7 (4), p.417-430
Hauptverfasser: Bushueva, Natalia A., Kuzvesov, Konstantin V., Tsikh, Avgust K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair (γ, ω), where γ is a homological k-dimensional cycle on the characteristic set of the equation and ω is a holomorphic form of degree k. This pair defines a so called homological solution by the integral over γ of the form ω multiplied by an exponential kernel. A multidimensional variant of Perron's theorem in the class of homological solutions is illustrated by an example of the first order equation.
ISSN:1997-1397
2313-6022
DOI:10.17516/1997-1397-2014-7-4-417-430