On the Asymptotic of Homological Solutions to Linear Multidimensional Difference Equations
Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair (γ, ω), where γ is a homological k-dimensional cycle on the characteristic set of the equation and ω is a holomorphic form of degree k. This pair defines a so called homological solution by t...
Gespeichert in:
Veröffentlicht in: | Journal of Siberian Federal University. Mathematics & Physics 2014-01, Vol.7 (4), p.417-430 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair (γ, ω), where γ is a homological k-dimensional cycle on the characteristic set of the equation and ω is a holomorphic form of degree k. This pair defines a so called homological solution by the integral over γ of the form ω multiplied by an exponential kernel. A multidimensional variant of Perron's theorem in the class of homological solutions is illustrated by an example of the first order equation. |
---|---|
ISSN: | 1997-1397 2313-6022 |
DOI: | 10.17516/1997-1397-2014-7-4-417-430 |