Single-Event Transient Response of InGaAs MOSFETs
The single-event-transient response of InGaAs MOSFETs exposed to heavy-ion and laser irradiations is investigated. The large barrier between the gate oxide and semiconductor regions effectively suppresses the gate transients compared with other types of III-V FETs. After the initial radiation-induce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2014-12, Vol.61 (6), p.3550-3556 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The single-event-transient response of InGaAs MOSFETs exposed to heavy-ion and laser irradiations is investigated. The large barrier between the gate oxide and semiconductor regions effectively suppresses the gate transients compared with other types of III-V FETs. After the initial radiation-induced pulse, electrons and holes flood into the channel region at short time. The electrons are collected efficiently at the drain. The slower moving holes accumulate in the channel and source access region and modulate the source-channel barrier, which provides a pathway for transient source-to-drain current lasting for a few nanoseconds. The peak drain transient current reaches its maximum when the gate bias is near threshold and decreases considerably toward inversion and slightly toward depletion and accumulation. Two-dimensional TCAD simulations are used to understand the charge collection mechanisms. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2014.2365437 |