Optimization of Parallel and Serpentine Configurations for Polymer Electrolyte Membrane Fuel Cells

A network‐based optimization model was developed to optimize the channel dimensions of flow fields in order to achieve a uniform flow distribution and improve the performance of polymer electrolyte membrane (PEM) fuel cells. Different flow field configurations, including parallel, parallel‐in‐series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2014-12, Vol.14 (6), p.876-885
Hauptverfasser: Guo, N., Leu, M. C., Koylu, U. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A network‐based optimization model was developed to optimize the channel dimensions of flow fields in order to achieve a uniform flow distribution and improve the performance of polymer electrolyte membrane (PEM) fuel cells. Different flow field configurations, including parallel, parallel‐in‐series, and serpentine, were investigated using the present optimization model. Two cases, with and without considering reactant consumption, were compared to show the effect of including reactant consumption on the flow field designs. The results demonstrated that the optimized designs significantly improved the flow velocity distribution in all the configurations investigated. The optimized designs with consideration of reactant consumption exhibited more uniform flow velocity distribution when the entire fuel cell unit was considered. Additionally, the performances of PEM fuel cells for the conventional and optimized flow field designs were studied with a three‐dimensional, two‐phase fuel cell simulation model, and the computational results showed that the optimized designs with considering reactant consumption produced the highest maximum power density for each configuration investigated. These results show that the network‐based model is capable of optimizing various flow field configurations with flexibility and indicate the importance of considering reactant consumption in the optimization model.
ISSN:1615-6846
1615-6854
DOI:10.1002/fuce.201400127