Scalable Implicit Flow Solver for Realistic Wing Simulations with Flow Control

Massively parallel computation provides an enormous capacity to perform simulations on a timescale that can change the paradigm of how scientists, engineers, and other practitioners use simulations to address discovery and design. This work considers an active flow control application on a realistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2014-11, Vol.16 (6), p.13-21
Hauptverfasser: Rasquin, Michel, Smith, Cameron, Chitale, Kedar, Seol, E. Seegyoung, Matthews, Benjamin A., Martin, Jeffrey L., Sahni, Onkar, Loy, Raymond M., Shephard, Mark S., Jansen, Kenneth E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Massively parallel computation provides an enormous capacity to perform simulations on a timescale that can change the paradigm of how scientists, engineers, and other practitioners use simulations to address discovery and design. This work considers an active flow control application on a realistic and complex wing design that could be leveraged by a scalable, fully implicit, unstructured flow solver and access to high-performance computing resources. The article describes the active flow control application; then summarizes the main features in the implementation of a massively parallel turbulent flow solver, PHASTA; and finally demonstrates the methods strong scalability at extreme scale. Scaling studies performed with unstructured meshes of 11 and 92 billion elements on the Argonne Leadership Computing Facility's Blue Gene/Q Mira machine with up to 786,432 cores and 3,145,728 MPI processes.
ISSN:1521-9615
1558-366X
DOI:10.1109/MCSE.2014.75