Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric Microbiota in ApoE-Deficient Mice1,2

Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition 2014-12, Vol.144 (12), p.1956
Hauptverfasser: London, Lis E E, Kumar, Arun H S, Wall, Rebecca, Casey, Pat G, O'Sullivan, Orla, Shanahan, Fergus, Hill, Colin, Cotter, Paul D, Fitzgerald, Gerald F, Ross, R Paul, Caplice, Noel M, Stanton, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt: vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 X 10^sup 9^ colony-forming units/d per animal were administered to apoE^sup -/-^ mice fed a high-fat (60% fat)/ high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P < 0.001; ~33-50%) and liver (P < 0.05; ~30%) and serum triglyceride concentrations were reduced (P < 0.05; ~ 15-25%) in mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P < 0.05) compared with all other groups. Compositional sequencing of the gut microbiota revealed a greater prevalence of Porphyromonadaceae (P = 0.001) and Prevotellaceae (P = 0.001) in the DPC 6426 group and lower proportions of Clostridiaceae (P < 0.05), Peptococcaceae (P < 0.001 ), and Staphylococcaceae (P < 0.01 ) compared with the placebo group. Ingestion of exopolysaccharide-producing lactobacilli resulted in seemingly favorable improvements in lipid metabolism, which were associated with changes in the gut microbiota of mice.
ISSN:0022-3166
1541-6100