Holonomy group scheme of an integral curve
Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistab...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2014-12, Vol.287 (17-18), p.1937-1953 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1953 |
---|---|
container_issue | 17-18 |
container_start_page | 1937 |
container_title | Mathematische Nachrichten |
container_volume | 287 |
creator | Bhosle, Usha N. Parameswaran, A. J. |
description | Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistable if and only if its pull back to X is strongly semistable and hence it is a tensor category. In case dimY=1, we show that strongly semistable vector bundles on Y form a neutral Tannakian category. We define the holonomy group scheme GY of Y to be the Tannakian group scheme for this category. For a strongly semistable principal G‐bundle EG, we construct a holonomy group scheme. We show that if Y is an integral complex nodal curve, then the holonomy group of a strongly semistable vector bundle on Y is the Zariski closure of the (topological) fundamental group of Y. |
doi_str_mv | 10.1002/mana.201300117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1629251888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3512727301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4257-4584b820cd48c8870147781da637b96b47b7393a15af18656db52b597ec31c873</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKdXzwVvQmfepPnocQzdhG2CKBMvIc3S2dk2M1nV_fd2VIY3T-_led4fPAhdAh4AxuSm0rUeEAwUYwBxhHrACIkJB36Mei3AYiaTl1N0FsIaY5ymgvfQ9cSVrnbVLlp512yiYN5sZSOXR7qOinprV16XkWn8pz1HJ7kug734vX30fHf7NJrE04fx_Wg4jU1CmIiTdiWTBJtlIo2UAkMihISl5lRkKc8SkQmaUg1M5yA548uMkYylwhoKRgraR1fd3413H40NW7V2ja_bSQWcpISBlLKlBh1lvAvB21xtfFFpv1OA1b6H2vdQhx6tkHbCV1Ha3T-0mg3nw79u3LlF2Nrvg6v9u-KCCqYW87GaPZLJ-BUv1Iz-AFGOcLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629251888</pqid></control><display><type>article</type><title>Holonomy group scheme of an integral curve</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bhosle, Usha N. ; Parameswaran, A. J.</creator><creatorcontrib>Bhosle, Usha N. ; Parameswaran, A. J.</creatorcontrib><description>Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistable if and only if its pull back to X is strongly semistable and hence it is a tensor category. In case dimY=1, we show that strongly semistable vector bundles on Y form a neutral Tannakian category. We define the holonomy group scheme GY of Y to be the Tannakian group scheme for this category. For a strongly semistable principal G‐bundle EG, we construct a holonomy group scheme. We show that if Y is an integral complex nodal curve, then the holonomy group of a strongly semistable vector bundle on Y is the Zariski closure of the (topological) fundamental group of Y.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201300117</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>14F05 ; 14H60 ; Curves ; Tannakian category ; vector bundles</subject><ispartof>Mathematische Nachrichten, 2014-12, Vol.287 (17-18), p.1937-1953</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4257-4584b820cd48c8870147781da637b96b47b7393a15af18656db52b597ec31c873</citedby><cites>FETCH-LOGICAL-c4257-4584b820cd48c8870147781da637b96b47b7393a15af18656db52b597ec31c873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201300117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201300117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bhosle, Usha N.</creatorcontrib><creatorcontrib>Parameswaran, A. J.</creatorcontrib><title>Holonomy group scheme of an integral curve</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistable if and only if its pull back to X is strongly semistable and hence it is a tensor category. In case dimY=1, we show that strongly semistable vector bundles on Y form a neutral Tannakian category. We define the holonomy group scheme GY of Y to be the Tannakian group scheme for this category. For a strongly semistable principal G‐bundle EG, we construct a holonomy group scheme. We show that if Y is an integral complex nodal curve, then the holonomy group of a strongly semistable vector bundle on Y is the Zariski closure of the (topological) fundamental group of Y.</description><subject>14F05</subject><subject>14H60</subject><subject>Curves</subject><subject>Tannakian category</subject><subject>vector bundles</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOKdXzwVvQmfepPnocQzdhG2CKBMvIc3S2dk2M1nV_fd2VIY3T-_led4fPAhdAh4AxuSm0rUeEAwUYwBxhHrACIkJB36Mei3AYiaTl1N0FsIaY5ymgvfQ9cSVrnbVLlp512yiYN5sZSOXR7qOinprV16XkWn8pz1HJ7kug734vX30fHf7NJrE04fx_Wg4jU1CmIiTdiWTBJtlIo2UAkMihISl5lRkKc8SkQmaUg1M5yA548uMkYylwhoKRgraR1fd3413H40NW7V2ja_bSQWcpISBlLKlBh1lvAvB21xtfFFpv1OA1b6H2vdQhx6tkHbCV1Ha3T-0mg3nw79u3LlF2Nrvg6v9u-KCCqYW87GaPZLJ-BUv1Iz-AFGOcLg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Bhosle, Usha N.</creator><creator>Parameswaran, A. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>Holonomy group scheme of an integral curve</title><author>Bhosle, Usha N. ; Parameswaran, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4257-4584b820cd48c8870147781da637b96b47b7393a15af18656db52b597ec31c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14F05</topic><topic>14H60</topic><topic>Curves</topic><topic>Tannakian category</topic><topic>vector bundles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhosle, Usha N.</creatorcontrib><creatorcontrib>Parameswaran, A. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhosle, Usha N.</au><au>Parameswaran, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holonomy group scheme of an integral curve</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2014-12</date><risdate>2014</risdate><volume>287</volume><issue>17-18</issue><spage>1937</spage><epage>1953</epage><pages>1937-1953</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistable if and only if its pull back to X is strongly semistable and hence it is a tensor category. In case dimY=1, we show that strongly semistable vector bundles on Y form a neutral Tannakian category. We define the holonomy group scheme GY of Y to be the Tannakian group scheme for this category. For a strongly semistable principal G‐bundle EG, we construct a holonomy group scheme. We show that if Y is an integral complex nodal curve, then the holonomy group of a strongly semistable vector bundle on Y is the Zariski closure of the (topological) fundamental group of Y.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mana.201300117</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2014-12, Vol.287 (17-18), p.1937-1953 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_1629251888 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 14F05 14H60 Curves Tannakian category vector bundles |
title | Holonomy group scheme of an integral curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holonomy%20group%20scheme%20of%20an%20integral%20curve&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bhosle,%20Usha%20N.&rft.date=2014-12&rft.volume=287&rft.issue=17-18&rft.spage=1937&rft.epage=1953&rft.pages=1937-1953&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201300117&rft_dat=%3Cproquest_cross%3E3512727301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629251888&rft_id=info:pmid/&rfr_iscdi=true |