Holonomy group scheme of an integral curve

Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2014-12, Vol.287 (17-18), p.1937-1953
Hauptverfasser: Bhosle, Usha N., Parameswaran, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y be a projective variety over a field k (of arbitrary characteristic). Assume that the normalization X of Y is such that Xk¯ is normal, k¯ being the algebraic closure of k. We define a notion of strong semistability for vector bundles on Y. We show that a vector bundle on Y is strongly semistable if and only if its pull back to X is strongly semistable and hence it is a tensor category. In case dimY=1, we show that strongly semistable vector bundles on Y form a neutral Tannakian category. We define the holonomy group scheme GY of Y to be the Tannakian group scheme for this category. For a strongly semistable principal G‐bundle EG, we construct a holonomy group scheme. We show that if Y is an integral complex nodal curve, then the holonomy group of a strongly semistable vector bundle on Y is the Zariski closure of the (topological) fundamental group of Y.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201300117