The canonical contact structure on the space of oriented null geodesics of pseudospheres and products

Let S k,m be the pseudosphere of signature ( k,m ). We show that the space ℒ 0 (S k,m ) of all oriented null geodesics in S k,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in geometry 2013-10, Vol.13 (4), p.713-722
Hauptverfasser: Godoy, Yamile, Salvai, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S k,m be the pseudosphere of signature ( k,m ). We show that the space ℒ 0 (S k,m ) of all oriented null geodesics in S k,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ 0 (S k,m ) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ 0 (N) to be manifolds and exhibit a contactomorphism with some standard contact manifold.
ISSN:1615-715X
1615-7168
DOI:10.1515/advgeom-2013-0019