The canonical contact structure on the space of oriented null geodesics of pseudospheres and products
Let S k,m be the pseudosphere of signature ( k,m ). We show that the space ℒ 0 (S k,m ) of all oriented null geodesics in S k,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurf...
Gespeichert in:
Veröffentlicht in: | Advances in geometry 2013-10, Vol.13 (4), p.713-722 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let S
k,m
be the pseudosphere of signature (
k,m
). We show that the space ℒ
0
(S
k,m
) of all oriented null geodesics in S
k,m
is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ
0
(S
k,m
) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ
0
(N) to be manifolds and exhibit a contactomorphism with some standard contact manifold. |
---|---|
ISSN: | 1615-715X 1615-7168 |
DOI: | 10.1515/advgeom-2013-0019 |