The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow
In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for whi...
Gespeichert in:
Veröffentlicht in: | Advances in calculus of variations 2013-04, Vol.6 (2), p.123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 123 |
container_title | Advances in calculus of variations |
container_volume | 6 |
creator | Mazón, José M. Segura de León, Sergio |
description | In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown. |
doi_str_mv | 10.1515/acv-2011-0001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1628907755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3512003341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-cfc0f71ba200edbebb917e00dda623570cc7ecfea414bee95e1c4554859fc6713</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EElXpyG6J2eBLYycZUfmUkFjKbDnumbpyktZOglj47TgtYrqT3o_TPYRcA78FAeJOm5FlHIBxzuGMzKCUOSszKc__d1FekkWMu-TgeQVCyBn5WW-RPrjgzNZjT_ehqz021HaBahpd-zl4HSh67_a9MxQPg-5d11Id3KRS19I-NXgc0dOYGlKySZmjqbNH0bUjhoi0Qd1SM4RR90NAan33dUUurPYRF39zTj6eHterF_b2_vy6un9jJpOiZ8YabguodcY5bmqs6woK5Hyz0TJbioIbU6CxqHPIa8RKIJhciLwUlTWygOWc3Jx604OHAWOvdt0Q2nRSgczKiheFEMnFTi4TuhgDWrUPrtHhWwFXE2WVKKuJspooL38Bk5lyrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628907755</pqid></control><display><type>article</type><title>The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow</title><source>De Gruyter journals</source><creator>Mazón, José M. ; Segura de León, Sergio</creator><creatorcontrib>Mazón, José M. ; Segura de León, Sergio</creatorcontrib><description>In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown.</description><identifier>ISSN: 1864-8258</identifier><identifier>EISSN: 1864-8266</identifier><identifier>DOI: 10.1515/acv-2011-0001</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH</publisher><subject>Dirichlet problem</subject><ispartof>Advances in calculus of variations, 2013-04, Vol.6 (2), p.123</ispartof><rights>Copyright Walter de Gruyter GmbH Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-cfc0f71ba200edbebb917e00dda623570cc7ecfea414bee95e1c4554859fc6713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mazón, José M.</creatorcontrib><creatorcontrib>Segura de León, Sergio</creatorcontrib><title>The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow</title><title>Advances in calculus of variations</title><description>In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown.</description><subject>Dirichlet problem</subject><issn>1864-8258</issn><issn>1864-8266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EElXpyG6J2eBLYycZUfmUkFjKbDnumbpyktZOglj47TgtYrqT3o_TPYRcA78FAeJOm5FlHIBxzuGMzKCUOSszKc__d1FekkWMu-TgeQVCyBn5WW-RPrjgzNZjT_ehqz021HaBahpd-zl4HSh67_a9MxQPg-5d11Id3KRS19I-NXgc0dOYGlKySZmjqbNH0bUjhoi0Qd1SM4RR90NAan33dUUurPYRF39zTj6eHterF_b2_vy6un9jJpOiZ8YabguodcY5bmqs6woK5Hyz0TJbioIbU6CxqHPIa8RKIJhciLwUlTWygOWc3Jx604OHAWOvdt0Q2nRSgczKiheFEMnFTi4TuhgDWrUPrtHhWwFXE2WVKKuJspooL38Bk5lyrQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Mazón, José M.</creator><creator>Segura de León, Sergio</creator><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow</title><author>Mazón, José M. ; Segura de León, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-cfc0f71ba200edbebb917e00dda623570cc7ecfea414bee95e1c4554859fc6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dirichlet problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazón, José M.</creatorcontrib><creatorcontrib>Segura de León, Sergio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazón, José M.</au><au>Segura de León, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow</atitle><jtitle>Advances in calculus of variations</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>6</volume><issue>2</issue><spage>123</spage><pages>123-</pages><issn>1864-8258</issn><eissn>1864-8266</eissn><abstract>In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown.</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/acv-2011-0001</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-8258 |
ispartof | Advances in calculus of variations, 2013-04, Vol.6 (2), p.123 |
issn | 1864-8258 1864-8266 |
language | eng |
recordid | cdi_proquest_journals_1628907755 |
source | De Gruyter journals |
subjects | Dirichlet problem |
title | The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dirichlet%20problem%20for%20a%20singular%20elliptic%20equation%20arising%20in%20the%20level%20set%20formulation%20of%20the%20inverse%20mean%20curvature%20flow&rft.jtitle=Advances%20in%20calculus%20of%20variations&rft.au=Maz%C3%B3n,%20Jos%C3%A9%20M.&rft.date=2013-04-01&rft.volume=6&rft.issue=2&rft.spage=123&rft.pages=123-&rft.issn=1864-8258&rft.eissn=1864-8266&rft_id=info:doi/10.1515/acv-2011-0001&rft_dat=%3Cproquest_cross%3E3512003341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628907755&rft_id=info:pmid/&rfr_iscdi=true |