The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow
In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for whi...
Gespeichert in:
Veröffentlicht in: | Advances in calculus of variations 2013-04, Vol.6 (2), p.123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown. |
---|---|
ISSN: | 1864-8258 1864-8266 |
DOI: | 10.1515/acv-2011-0001 |