The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow

In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in calculus of variations 2013-04, Vol.6 (2), p.123
Hauptverfasser: Mazón, José M., Segura de León, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we consider the Dirichlet problem associated with a nonlinear singular elliptic equation whose differential operator arises in the level set formulation of the inverse mean curvature flow; namely, we study [Image omitted] We introduce a suitable concept of weak solution, for which we prove existence and uniqueness of the homogeneous Dirichlet problem in a bounded open set of R N for data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions are shown.
ISSN:1864-8258
1864-8266
DOI:10.1515/acv-2011-0001