Overexpression of bacterial [gamma]-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar
Summary Overexpression of bacterial [gamma]-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd2+ influx in association with H+/Ca2+...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2015-01, Vol.205 (1), p.240 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary Overexpression of bacterial [gamma]-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd2+ influx in association with H+/Ca2+, Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd2+ influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd2+ transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd2+ influxes into roots at pH 5.5 and 0.1 mM Ca2+. Transgenics had higher Cd2+ uptake rates and elevated transcript levels of several genes involved in Cd2+ transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd2+ exposure. Moreover, transgenic poplars had lower concentrations of O2- and H2O2; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 µM Cd2+ than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd2+ transport and detoxification. |
---|---|
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.13013 |