Mass Detection in Lung CT Images Using Region Growing Segmentation and Decision Making Based on Fuzzy Inference System and Artificial Neural Network

Lung cancer is distinguished by presenting one of the highest incidences and one of the highest rates of mortality among all other types of cancers. Detecting and curing the disease in the early stages provides the patients with a high chance of survival. This work aims at detecting lung nodules aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of image, graphics and signal processing graphics and signal processing, 2013-05, Vol.5 (6), p.16-24
Hauptverfasser: Hashemi, Atiyeh, Hamid Pilevar, Abdol, Rafeh, Reza
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer is distinguished by presenting one of the highest incidences and one of the highest rates of mortality among all other types of cancers. Detecting and curing the disease in the early stages provides the patients with a high chance of survival. This work aims at detecting lung nodules automatically through computerized tomography (CT) image. Accordingly, this article aim at presenting a method to improve the efficiency of the lung cancer diagnosis system, through proposing a region growing segmentation method to segment CT scan lung images. Afterwards, cancer recognition are presenting by Fuzzy Inference System (FIS) for differentiating between malignant, benign and advanced lung nodules. In the following, this paper is testing the diagnostic performances of FIS system by using artificial neural networks (ANNs). Our experiments show that the average sensitivity of the proposed method is 95%.
ISSN:2074-9074
2074-9082
DOI:10.5815/ijigsp.2013.06.03