Procedures for outlier detection in circular time series models

It is known that the occurrence of outliers in linear or non-linear time series models may have adverse effects on the modelling and statistical inference of the data. Consequently, extensive research has been conducted on developing outlier detection procedures so that outliers may be properly mana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and ecological statistics 2014-12, Vol.21 (4), p.793-809
Hauptverfasser: Abuzaid, A. H, Mohamed, I. B, Hussin, A. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the occurrence of outliers in linear or non-linear time series models may have adverse effects on the modelling and statistical inference of the data. Consequently, extensive research has been conducted on developing outlier detection procedures so that outliers may be properly managed. However, no work has been done on the problem of outliers in circular time series data. This problem is the focus of this paper. The main objective is to develop novel numerical and graphical procedures for detecting these outliers in circular time series data.A number of circular time series models have been proposed including the circular autoregressive model. We extend the iterative outlier detection procedure which has been successfully used in linear time series models to the circular autoregressive model. The proposed procedure shows a good performance when investigated via simulation for the circular autoregressive model of order one. At the same time, several statistical techniques have been used to detect the change of preferred trend in time series data using SLIME and CUSUM plots. While the methods fail to indicate directly the outliers in circular time series data, we use the ideas employed to develop three novel graphical procedures for identifying the outliers. For illustration, we apply the procedures to a particular set of wind direction data. An agreement between the results of the graphical and iterative detection procedures is observed. These procedures could be very useful in improving the modelling and inferential processes for circular time series data.
ISSN:1352-8505
1573-3009
DOI:10.1007/s10651-014-0281-8