Novel Technique for Wideband Digital Predistortion of Power Amplifiers With an Under-Sampling ADC

Most conventional wideband digital predistortion (DPD) techniques require the use of a very high-speed analog-to- digital converter (ADC) in the feedback path. This paper proposes a novel technique, termed under-sampling restoration digital predistortion (USR-DPD), to linearize wideband power amplif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2014-11, Vol.62 (11), p.2604-2617
Hauptverfasser: Youjiang Liu, Yan, Jonmei J., Dabag, Hayg-Taniel, Asbeck, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most conventional wideband digital predistortion (DPD) techniques require the use of a very high-speed analog-to- digital converter (ADC) in the feedback path. This paper proposes a novel technique, termed under-sampling restoration digital predistortion (USR-DPD), to linearize wideband power amplifiers (PAs) with ADCs that operate at sampling rates much lower than required by Nyquist limits for the predistorted band (under-sampling ADCs). The USR processing is implemented in an iterative way to restore full-band PA output information from the under-sampled output signal, allowing memory DPD models to be successfully extracted. The USR-DPD can operate in two modes: without and with a band-limiting filter in the feedback path. In comparison with conventional DPD techniques, the requirement for ADC sampling frequency can be significantly reduced using the USR-DPD approach. Experimental tests were realized for two PAs with numerous signals (10-, 20-, 40-, and 60-MHz long-term evolution signals) using different ADC sampling frequencies. The DPD with the under-sampling ADC could achieve comparable performances to its counterpart with a full-rate ADC, while using 3-5 times lower sampling frequency, and around -50-dBc adjacent channel power ratios were achieved.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2014.2360398