Incompressible SPH using the Divergence-Free Condition

In this paper, we present a novel SPH framework to simulate incompressible fluid that satisfies both the divergence‐ free condition and the density‐invariant condition. In our framework, the two conditions are applied separately. First, the divergence‐free condition is enforced when solving the mome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2014-10, Vol.33 (7), p.219-228
Hauptverfasser: Kang, Nahyup, Sagong, Donghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel SPH framework to simulate incompressible fluid that satisfies both the divergence‐ free condition and the density‐invariant condition. In our framework, the two conditions are applied separately. First, the divergence‐free condition is enforced when solving the momentum equation. Later, the density‐invariant condition is applied after the time integration of the particle positions. Our framework is a purely Lagrangian approach so that no auxiliary grid is required. Compared to the previous density‐invariant based SPH methods, the proposed method is more accurate due to the explicit satisfaction of the divergence‐free condition. We also propose a modified boundary particle method for handling the free‐slip condition. In addition, two simple but effective methods are proposed to reduce the particle clumping artifact induced by the density‐invariant condition.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12490