Improving Physical Properties via CH Oxidation: Chemical and Enzymatic Approaches
Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional group...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2014-11, Vol.126 (45), p.12287 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | ger |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of CH oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water-soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201407016 |