CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

Truncating mutations of chromodomain helicase DNA-binding protein 8 ( CHD8 ), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.E4468-E4477
Hauptverfasser: Sugathan, Aarathi, Biagioli, Marta, Golzio, Christelle, Erdin, Serkan, Blumenthal, Ian, Manavalan, Poornima, Ragavendran, Ashok, Brand, Harrison, Lucente, Diane, Miles, Judith, Sheridan, Steven D, Stortchevoi, Alexei, Kellis, Manolis, Haggarty, Stephen J, Katsanis, Nicholas, Gusella, James F, Talkowski, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Truncating mutations of chromodomain helicase DNA-binding protein 8 ( CHD8 ), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci ( P < 10 ⁻⁸) and CHD8-bound genes ( P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes ( P < 10 ⁻¹⁰). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. Significance Truncating mutation of chromodomain helicase DNA-binding protein 8 ( CHD8 ) represents one of the strongest known risk factors for autism spectrum disorder (ASD). We mimicked the effects of such heterozygous loss-of-function mutations in neural progenitor cells and integrated RNA sequencing with genome-wide delineation of CHD8 binding. Our results reveal that the molecular mechanism by which CHD8 alters neurodevelopmental pathways may involve both direct and indirect effects, the latter involving down-regulation following CHD8 suppression. We also find that chd8 suppression in zebrafish results in macrocephaly, c
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1405266111