Quantitative MRI for hepatic fat fraction and T2 measurement in pediatric patients with non-alcoholic fatty liver disease

Background Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appeal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric radiology 2014-11, Vol.44 (11), p.1379-1387
Hauptverfasser: Deng, Jie, Fishbein, Mark H., Rigsby, Cynthia K., Zhang, Gang, Schoeneman, Samantha E., Donaldson, James S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. Objective To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. Materials and methods A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2* W ) and fat (T2* F ) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. Results In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model ( P  
ISSN:0301-0449
1432-1998
DOI:10.1007/s00247-014-3024-y