3-Flows and Combs

Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2014-12, Vol.77 (4), p.260-277
Hauptverfasser: da Silva, Cândida Nunes, Lucchesi, Cláudio L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show that minimum counterexamples to the latter statement are 3‐connected, cyclically 4‐connected, and cyclically 7‐edge‐connected.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.21785