3-Flows and Combs
Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2014-12, Vol.77 (4), p.260-277 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show that minimum counterexamples to the latter statement are 3‐connected, cyclically 4‐connected, and cyclically 7‐edge‐connected. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.21785 |