Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data

In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2014-11, Vol.132, p.94-110
Hauptverfasser: Tian, Ruiqin, Xue, Liugen, Liu, Chunling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 94
container_title Journal of multivariate analysis
container_volume 132
creator Tian, Ruiqin
Xue, Liugen
Liu, Chunling
description In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.
doi_str_mv 10.1016/j.jmva.2014.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1610784912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X14001729</els_id><sourcerecordid>3459082811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQha0KJJbSP8DJEucEO-vEjsQFVVCQKrUHkHqznPG4OErsre0sKhL_vV4tZ05zmPfezPsIec9ZyxkfPs7tvB5N2zEuWiZbxvsLsuNs7BvZif0rsmNMyKbrx4c35G3OM2Oc91LsyN97DGbxf9DSp83YZIoH6oPDhAGQui1A8TFk6mKiGVd_MMmsWFKVHU169uGRQkTnPHgMhdZ18WZZnuniA5pE12hxyfS3L7_oEsOjL5v19SS1pph35LUzS8arf_OS_Pz65cf1t-b27ub79efbBvayK83QGRiYwF5ylMAHsBJAYq-GQYHlToBx02RG7NAIVKNi4NSkpskJ1RsF-0vy4Zx7SPFpw1z0HLdUv8iaD5xJJUbeVVV3VkGKOSd0-pD8WktqzvQJs571CbM-YdZM6oq5mj6dTbUlHj0mnU8kAK1PCEXb6P9nfwEv8osx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610784912</pqid></control><display><type>article</type><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</creator><creatorcontrib>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</creatorcontrib><description>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2014.07.015</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Approximation ; Asymptotic methods ; Decision making models ; Longitudinal data ; Mathematical functions ; Monte Carlo simulation ; Parameter estimation ; Quadratic inference functions ; Semiparametric varying coefficient partially linear models ; Studies ; Variable selection</subject><ispartof>Journal of multivariate analysis, 2014-11, Vol.132, p.94-110</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</citedby><cites>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X14001729$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tian, Ruiqin</creatorcontrib><creatorcontrib>Xue, Liugen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><title>Journal of multivariate analysis</title><description>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Decision making models</subject><subject>Longitudinal data</subject><subject>Mathematical functions</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Quadratic inference functions</subject><subject>Semiparametric varying coefficient partially linear models</subject><subject>Studies</subject><subject>Variable selection</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQha0KJJbSP8DJEucEO-vEjsQFVVCQKrUHkHqznPG4OErsre0sKhL_vV4tZ05zmPfezPsIec9ZyxkfPs7tvB5N2zEuWiZbxvsLsuNs7BvZif0rsmNMyKbrx4c35G3OM2Oc91LsyN97DGbxf9DSp83YZIoH6oPDhAGQui1A8TFk6mKiGVd_MMmsWFKVHU169uGRQkTnPHgMhdZ18WZZnuniA5pE12hxyfS3L7_oEsOjL5v19SS1pph35LUzS8arf_OS_Pz65cf1t-b27ub79efbBvayK83QGRiYwF5ylMAHsBJAYq-GQYHlToBx02RG7NAIVKNi4NSkpskJ1RsF-0vy4Zx7SPFpw1z0HLdUv8iaD5xJJUbeVVV3VkGKOSd0-pD8WktqzvQJs571CbM-YdZM6oq5mj6dTbUlHj0mnU8kAK1PCEXb6P9nfwEv8osx</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Tian, Ruiqin</creator><creator>Xue, Liugen</creator><creator>Liu, Chunling</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20141101</creationdate><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><author>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Decision making models</topic><topic>Longitudinal data</topic><topic>Mathematical functions</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Quadratic inference functions</topic><topic>Semiparametric varying coefficient partially linear models</topic><topic>Studies</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Ruiqin</creatorcontrib><creatorcontrib>Xue, Liugen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Ruiqin</au><au>Xue, Liugen</au><au>Liu, Chunling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>132</volume><spage>94</spage><epage>110</epage><pages>94-110</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2014.07.015</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2014-11, Vol.132, p.94-110
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1610784912
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Asymptotic methods
Decision making models
Longitudinal data
Mathematical functions
Monte Carlo simulation
Parameter estimation
Quadratic inference functions
Semiparametric varying coefficient partially linear models
Studies
Variable selection
title Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penalized%20quadratic%20inference%20functions%20for%20semiparametric%20varying%20coefficient%20partially%20linear%20models%20with%20longitudinal%20data&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Tian,%20Ruiqin&rft.date=2014-11-01&rft.volume=132&rft.spage=94&rft.epage=110&rft.pages=94-110&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2014.07.015&rft_dat=%3Cproquest_cross%3E3459082811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610784912&rft_id=info:pmid/&rft_els_id=S0047259X14001729&rfr_iscdi=true