Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data
In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed proced...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2014-11, Vol.132, p.94-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 94 |
container_title | Journal of multivariate analysis |
container_volume | 132 |
creator | Tian, Ruiqin Xue, Liugen Liu, Chunling |
description | In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application. |
doi_str_mv | 10.1016/j.jmva.2014.07.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1610784912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X14001729</els_id><sourcerecordid>3459082811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQha0KJJbSP8DJEucEO-vEjsQFVVCQKrUHkHqznPG4OErsre0sKhL_vV4tZ05zmPfezPsIec9ZyxkfPs7tvB5N2zEuWiZbxvsLsuNs7BvZif0rsmNMyKbrx4c35G3OM2Oc91LsyN97DGbxf9DSp83YZIoH6oPDhAGQui1A8TFk6mKiGVd_MMmsWFKVHU169uGRQkTnPHgMhdZ18WZZnuniA5pE12hxyfS3L7_oEsOjL5v19SS1pph35LUzS8arf_OS_Pz65cf1t-b27ub79efbBvayK83QGRiYwF5ylMAHsBJAYq-GQYHlToBx02RG7NAIVKNi4NSkpskJ1RsF-0vy4Zx7SPFpw1z0HLdUv8iaD5xJJUbeVVV3VkGKOSd0-pD8WktqzvQJs571CbM-YdZM6oq5mj6dTbUlHj0mnU8kAK1PCEXb6P9nfwEv8osx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610784912</pqid></control><display><type>article</type><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</creator><creatorcontrib>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</creatorcontrib><description>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2014.07.015</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Approximation ; Asymptotic methods ; Decision making models ; Longitudinal data ; Mathematical functions ; Monte Carlo simulation ; Parameter estimation ; Quadratic inference functions ; Semiparametric varying coefficient partially linear models ; Studies ; Variable selection</subject><ispartof>Journal of multivariate analysis, 2014-11, Vol.132, p.94-110</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright Taylor & Francis Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</citedby><cites>FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X14001729$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tian, Ruiqin</creatorcontrib><creatorcontrib>Xue, Liugen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><title>Journal of multivariate analysis</title><description>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Decision making models</subject><subject>Longitudinal data</subject><subject>Mathematical functions</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Quadratic inference functions</subject><subject>Semiparametric varying coefficient partially linear models</subject><subject>Studies</subject><subject>Variable selection</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQha0KJJbSP8DJEucEO-vEjsQFVVCQKrUHkHqznPG4OErsre0sKhL_vV4tZ05zmPfezPsIec9ZyxkfPs7tvB5N2zEuWiZbxvsLsuNs7BvZif0rsmNMyKbrx4c35G3OM2Oc91LsyN97DGbxf9DSp83YZIoH6oPDhAGQui1A8TFk6mKiGVd_MMmsWFKVHU169uGRQkTnPHgMhdZ18WZZnuniA5pE12hxyfS3L7_oEsOjL5v19SS1pph35LUzS8arf_OS_Pz65cf1t-b27ub79efbBvayK83QGRiYwF5ylMAHsBJAYq-GQYHlToBx02RG7NAIVKNi4NSkpskJ1RsF-0vy4Zx7SPFpw1z0HLdUv8iaD5xJJUbeVVV3VkGKOSd0-pD8WktqzvQJs571CbM-YdZM6oq5mj6dTbUlHj0mnU8kAK1PCEXb6P9nfwEv8osx</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Tian, Ruiqin</creator><creator>Xue, Liugen</creator><creator>Liu, Chunling</creator><general>Elsevier Inc</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20141101</creationdate><title>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</title><author>Tian, Ruiqin ; Xue, Liugen ; Liu, Chunling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-62ac604e571e7c16cd7cc7e58668cd1f4cafbba9e2ea4e8980cf8b8bbf485a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Decision making models</topic><topic>Longitudinal data</topic><topic>Mathematical functions</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Quadratic inference functions</topic><topic>Semiparametric varying coefficient partially linear models</topic><topic>Studies</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Ruiqin</creatorcontrib><creatorcontrib>Xue, Liugen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Ruiqin</au><au>Xue, Liugen</au><au>Liu, Chunling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>132</volume><spage>94</spage><epage>110</epage><pages>94-110</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2014.07.015</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2014-11, Vol.132, p.94-110 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_1610784912 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Asymptotic methods Decision making models Longitudinal data Mathematical functions Monte Carlo simulation Parameter estimation Quadratic inference functions Semiparametric varying coefficient partially linear models Studies Variable selection |
title | Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penalized%20quadratic%20inference%20functions%20for%20semiparametric%20varying%20coefficient%20partially%20linear%20models%20with%20longitudinal%20data&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Tian,%20Ruiqin&rft.date=2014-11-01&rft.volume=132&rft.spage=94&rft.epage=110&rft.pages=94-110&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2014.07.015&rft_dat=%3Cproquest_cross%3E3459082811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610784912&rft_id=info:pmid/&rft_els_id=S0047259X14001729&rfr_iscdi=true |