Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data

In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2014-11, Vol.132, p.94-110
Hauptverfasser: Tian, Ruiqin, Xue, Liugen, Liu, Chunling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure by an application.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2014.07.015