Forced oscillation of certain fractional differential equations: Doc 467
The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], whe...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2013-05, Vol.2013, p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2013 |
creator | Chen, Da-xue Qu, Pei-xin Lan, Yong-hong |
description | The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1186/1687-1847-2013-125 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1588864562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3452672711</sourcerecordid><originalsourceid>FETCH-proquest_journals_15888645623</originalsourceid><addsrcrecordid>eNqNi00KwjAYRIMo-HsBVwHX0Xxpm6YrF2LxAO5LSBNICY1N0vtbRbp2NTOPNwgdgZ4BBL8AFyUBkZeEUcgIsGKBNjNczj2r1mgbY0cpq3IhNuha-6B0i31U1jmZrO-xN1jpkKTtsQlSfZh0uLXG6KD7ZKehh_Hrxj1aGemiPvxyh071_Xl7kFfww6hjajo_hukfGyiEEDwvOMv-s96W3UAh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1588864562</pqid></control><display><type>article</type><title>Forced oscillation of certain fractional differential equations: Doc 467</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</creator><creatorcontrib>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</creatorcontrib><description>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/1687-1847-2013-125</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><ispartof>Advances in difference equations, 2013-05, Vol.2013, p.1</ispartof><rights>The Author(s) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, Da-xue</creatorcontrib><creatorcontrib>Qu, Pei-xin</creatorcontrib><creatorcontrib>Lan, Yong-hong</creatorcontrib><title>Forced oscillation of certain fractional differential equations: Doc 467</title><title>Advances in difference equations</title><description>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</description><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi00KwjAYRIMo-HsBVwHX0Xxpm6YrF2LxAO5LSBNICY1N0vtbRbp2NTOPNwgdgZ4BBL8AFyUBkZeEUcgIsGKBNjNczj2r1mgbY0cpq3IhNuha-6B0i31U1jmZrO-xN1jpkKTtsQlSfZh0uLXG6KD7ZKehh_Hrxj1aGemiPvxyh071_Xl7kFfww6hjajo_hukfGyiEEDwvOMv-s96W3UAh</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Chen, Da-xue</creator><creator>Qu, Pei-xin</creator><creator>Lan, Yong-hong</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130501</creationdate><title>Forced oscillation of certain fractional differential equations</title><author>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15888645623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Da-xue</creatorcontrib><creatorcontrib>Qu, Pei-xin</creatorcontrib><creatorcontrib>Lan, Yong-hong</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Da-xue</au><au>Qu, Pei-xin</au><au>Lan, Yong-hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced oscillation of certain fractional differential equations: Doc 467</atitle><jtitle>Advances in difference equations</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>2013</volume><spage>1</spage><pages>1-</pages><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1186/1687-1847-2013-125</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1839 |
ispartof | Advances in difference equations, 2013-05, Vol.2013, p.1 |
issn | 1687-1839 1687-1847 |
language | eng |
recordid | cdi_proquest_journals_1588864562 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Forced oscillation of certain fractional differential equations: Doc 467 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20oscillation%20of%20certain%20fractional%20differential%20equations:%20Doc%20467&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Chen,%20Da-xue&rft.date=2013-05-01&rft.volume=2013&rft.spage=1&rft.pages=1-&rft.issn=1687-1839&rft.eissn=1687-1847&rft_id=info:doi/10.1186/1687-1847-2013-125&rft_dat=%3Cproquest%3E3452672711%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1588864562&rft_id=info:pmid/&rfr_iscdi=true |