Forced oscillation of certain fractional differential equations: Doc 467

The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2013-05, Vol.2013, p.1
Hauptverfasser: Chen, Da-xue, Qu, Pei-xin, Lan, Yong-hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1
container_title Advances in difference equations
container_volume 2013
creator Chen, Da-xue
Qu, Pei-xin
Lan, Yong-hong
description The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]
doi_str_mv 10.1186/1687-1847-2013-125
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1588864562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3452672711</sourcerecordid><originalsourceid>FETCH-proquest_journals_15888645623</originalsourceid><addsrcrecordid>eNqNi00KwjAYRIMo-HsBVwHX0Xxpm6YrF2LxAO5LSBNICY1N0vtbRbp2NTOPNwgdgZ4BBL8AFyUBkZeEUcgIsGKBNjNczj2r1mgbY0cpq3IhNuha-6B0i31U1jmZrO-xN1jpkKTtsQlSfZh0uLXG6KD7ZKehh_Hrxj1aGemiPvxyh071_Xl7kFfww6hjajo_hukfGyiEEDwvOMv-s96W3UAh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1588864562</pqid></control><display><type>article</type><title>Forced oscillation of certain fractional differential equations: Doc 467</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</creator><creatorcontrib>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</creatorcontrib><description>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/1687-1847-2013-125</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><ispartof>Advances in difference equations, 2013-05, Vol.2013, p.1</ispartof><rights>The Author(s) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, Da-xue</creatorcontrib><creatorcontrib>Qu, Pei-xin</creatorcontrib><creatorcontrib>Lan, Yong-hong</creatorcontrib><title>Forced oscillation of certain fractional differential equations: Doc 467</title><title>Advances in difference equations</title><description>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</description><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi00KwjAYRIMo-HsBVwHX0Xxpm6YrF2LxAO5LSBNICY1N0vtbRbp2NTOPNwgdgZ4BBL8AFyUBkZeEUcgIsGKBNjNczj2r1mgbY0cpq3IhNuha-6B0i31U1jmZrO-xN1jpkKTtsQlSfZh0uLXG6KD7ZKehh_Hrxj1aGemiPvxyh071_Xl7kFfww6hjajo_hukfGyiEEDwvOMv-s96W3UAh</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Chen, Da-xue</creator><creator>Qu, Pei-xin</creator><creator>Lan, Yong-hong</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130501</creationdate><title>Forced oscillation of certain fractional differential equations</title><author>Chen, Da-xue ; Qu, Pei-xin ; Lan, Yong-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15888645623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Da-xue</creatorcontrib><creatorcontrib>Qu, Pei-xin</creatorcontrib><creatorcontrib>Lan, Yong-hong</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Da-xue</au><au>Qu, Pei-xin</au><au>Lan, Yong-hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced oscillation of certain fractional differential equations: Doc 467</atitle><jtitle>Advances in difference equations</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>2013</volume><spage>1</spage><pages>1-</pages><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1186/1687-1847-2013-125</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1839
ispartof Advances in difference equations, 2013-05, Vol.2013, p.1
issn 1687-1839
1687-1847
language eng
recordid cdi_proquest_journals_1588864562
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Forced oscillation of certain fractional differential equations: Doc 467
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20oscillation%20of%20certain%20fractional%20differential%20equations:%20Doc%20467&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Chen,%20Da-xue&rft.date=2013-05-01&rft.volume=2013&rft.spage=1&rft.pages=1-&rft.issn=1687-1839&rft.eissn=1687-1847&rft_id=info:doi/10.1186/1687-1847-2013-125&rft_dat=%3Cproquest%3E3452672711%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1588864562&rft_id=info:pmid/&rfr_iscdi=true