Forced oscillation of certain fractional differential equations: Doc 467

The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2013-05, Vol.2013, p.1
Hauptverfasser: Chen, Da-xue, Qu, Pei-xin, Lan, Yong-hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper deals with the forced oscillation of the fractional differential equation [Equation not available: see fulltext.] with the initial conditions [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) and [InlineEquation not available: see fulltext.], where [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional derivative of order q of x, [InlineEquation not available: see fulltext.], [InlineEquation not available: see fulltext.] is an integer, [InlineEquation not available: see fulltext.] is the Riemann-Liouville fractional integral of order [InlineEquation not available: see fulltext.] of x, and [InlineEquation not available: see fulltext.] ([InlineEquation not available: see fulltext.]) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young's inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC: 34A08, 34C10.[PUBLICATION ABSTRACT]
ISSN:1687-1839
1687-1847
DOI:10.1186/1687-1847-2013-125