Limit Cycles Bifurcated from Some Z_4-Equivariant Quintic Near-Hamiltonian Systems
We study the number and distribution of limit cycles of some planar Z 4 -equivariant quintic near-Hamiltonian systems. By the theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new distributions. The configurations of limit cycles...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.450-464-1344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the number and distribution of limit cycles of some planar Z 4 -equivariant quintic near-Hamiltonian systems. By the theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new distributions. The configurations of limit cycles obtained in this paper are new. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/792439 |