Limit Cycles Bifurcated from Some Z_4-Equivariant Quintic Near-Hamiltonian Systems

We study the number and distribution of limit cycles of some planar Z 4 -equivariant quintic near-Hamiltonian systems. By the theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new distributions. The configurations of limit cycles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.450-464-1344
Hauptverfasser: Sun, Xianbo, Huang, Fengli, Tang, Cangxin, Qu, Simin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the number and distribution of limit cycles of some planar Z 4 -equivariant quintic near-Hamiltonian systems. By the theories of Hopf and heteroclinic bifurcation, it is proved that the perturbed system can have 24 limit cycles with some new distributions. The configurations of limit cycles obtained in this paper are new.
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/792439