Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks

Traffic sign recognition (TSR) is an important and challenging task for intelligent transportation systems. We describe the details of our model's architecture for TSR and suggest a hinge loss stochastic gradient descent (HLSGD) method to train convolutional neural networks (CNNs). Our CNN cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2014-10, Vol.15 (5), p.1991-2000
Hauptverfasser: Jin, Junqi, Fu, Kun, Zhang, Changshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traffic sign recognition (TSR) is an important and challenging task for intelligent transportation systems. We describe the details of our model's architecture for TSR and suggest a hinge loss stochastic gradient descent (HLSGD) method to train convolutional neural networks (CNNs). Our CNN consists of three stages (70-110-180) with 1162 284 trainable parameters. The HLSGD is evaluated on the German Traffic Sign Recognition Benchmark, which offers a faster and more stable convergence and a state-of-the-art recognition rate of 99.65%. We write a graphics processing unit package to train several CNNs and establish the final classifier in an ensemble way.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2014.2308281