CZTS-based materials and interfaces and their effects on the performance of thin film solar cells

Cu2ZnSnS4 (CZTS) and its related materials such as Cu2ZnSnSe4 (CZTSe) and Cu2ZnSn(S,Se)4 (CZTSSe) have attracted considerable attention as an absorber material for thin film solar cells due to the non‐toxicity, elemental abundance, and large production capacity of their constituents. Despite the sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2014-09, Vol.8 (9), p.735-762
Hauptverfasser: Huang, Tang Jiao, Yin, Xuesong, Qi, Guojun, Gong, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu2ZnSnS4 (CZTS) and its related materials such as Cu2ZnSnSe4 (CZTSe) and Cu2ZnSn(S,Se)4 (CZTSSe) have attracted considerable attention as an absorber material for thin film solar cells due to the non‐toxicity, elemental abundance, and large production capacity of their constituents. Despite the similarities between CZTS‐based materials and Cu(In,Ga)Se2(CIGS), the record efficiency of CZTS‐based solar cells remains significantly lower than that of CIGS solar cells. Considering that the difference between the two lies in the choice of the absorber material, the cause of the lower efficiency of CZTS‐based solar cells can be isolated to the issues associated with CZTS‐based materials and their related interfaces. Herein, these issues and the work done to understand and resolve them is reviewed. Unlike existing review papers, every unique region of CZTS‐based solar cells that contributes to its lower efficiency, namely: (1) the bulk of the absorber, (2) the grain boundaries of the absorber, (3) the absorber/buffer layer interface, and (4) the absorber/back contact interface are surveyed. This review also intends to identify the major unresolved issues and the potential improvement approaches of realizing sizable improvements in the solar cells' efficiency, thus providing a guide as to where research efforts should be focused. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) Cu2ZnSnS4‐based solar cells are a type of thin film solar cells that have been gaining considerable attention. However, their efficiencies remain significantly lower than those of Cu(In,Ga)Se2 (CIGS) solar cells. This review highlights the issues associated with the Cu2ZnSnS4‐based absorber and its related interfaces to illuminate how Cu2ZnSnS4‐based solar cells of higher efficiencies can be achieved.
ISSN:1862-6254
1862-6270
DOI:10.1002/pssr.201409219