On the Separation Question for Tree Languages

We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2014-11, Vol.55 (4), p.833-855
Hauptverfasser: Arnold, André, Michalewski, Henryk, Niwiński, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 4
container_start_page 833
container_title Theory of computing systems
container_volume 55
creator Arnold, André
Michalewski, Henryk
Niwiński, Damian
description We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The non-separation result is also adapted to the analogous classes induced by weak alternating automata. To prove our main result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Π n and fails for Σ n -classes. The construction invented for words turns out to be useful for trees via a suitable game. It remains open if the separation property holds for all classes Π n of the index hierarchy for tree automata. To give a positive answer it would be enough to show the reduction property of the dual classes—a method well-known in descriptive set theory. We show that it cannot work here, because the reduction property fails for all classes in the index hierarchy.
doi_str_mv 10.1007/s00224-013-9461-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1562074532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3432788141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-43b62e4206c0e000ecb6e266c7f5e2c2995f641f8e9e5b51e005682e2dd9867b3</originalsourceid><addsrcrecordid>eNp1kL1Ow0AQhE8IJELgAegsUR_s7f3YV6IICJKlCBHqk-2sTSKwzZ1d8PacYwoaqp3im5nVMHYt4FYApHcBAFFxEJJbZQRXJ2whlJQclIXTo0aupIZzdhHCAQBkBrBgfNMmwzslr9QXvhj2XZu8jBSOou58svVESV60zVg0FC7ZWV18BLr6vUv29viwXa15vnl6Xt3nvJJCDLGnNEgKwVRAsYqq0hAaU6W1JqzQWl0bJeqMLOlSi8hokyHhbmczk5ZyyW7m3N53X9M77tCNvo2VTmiDkCotMVJipirfheCpdr3ffxb-2wlw0ypuXsXFVdy0ilPRg7MnRLZtyP9J_tf0A3UqYjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562074532</pqid></control><display><type>article</type><title>On the Separation Question for Tree Languages</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>Arnold, André ; Michalewski, Henryk ; Niwiński, Damian</creator><creatorcontrib>Arnold, André ; Michalewski, Henryk ; Niwiński, Damian</creatorcontrib><description>We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The non-separation result is also adapted to the analogous classes induced by weak alternating automata. To prove our main result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Π n and fails for Σ n -classes. The construction invented for words turns out to be useful for trees via a suitable game. It remains open if the separation property holds for all classes Π n of the index hierarchy for tree automata. To give a positive answer it would be enough to show the reduction property of the dual classes—a method well-known in descriptive set theory. We show that it cannot work here, because the reduction property fails for all classes in the index hierarchy.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-013-9461-4</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Automation ; Computer Science ; Set theory ; Studies ; Theory of Computation ; Trees</subject><ispartof>Theory of computing systems, 2014-11, Vol.55 (4), p.833-855</ispartof><rights>The Author(s) 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-43b62e4206c0e000ecb6e266c7f5e2c2995f641f8e9e5b51e005682e2dd9867b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-013-9461-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-013-9461-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arnold, André</creatorcontrib><creatorcontrib>Michalewski, Henryk</creatorcontrib><creatorcontrib>Niwiński, Damian</creatorcontrib><title>On the Separation Question for Tree Languages</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The non-separation result is also adapted to the analogous classes induced by weak alternating automata. To prove our main result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Π n and fails for Σ n -classes. The construction invented for words turns out to be useful for trees via a suitable game. It remains open if the separation property holds for all classes Π n of the index hierarchy for tree automata. To give a positive answer it would be enough to show the reduction property of the dual classes—a method well-known in descriptive set theory. We show that it cannot work here, because the reduction property fails for all classes in the index hierarchy.</description><subject>Analysis</subject><subject>Automation</subject><subject>Computer Science</subject><subject>Set theory</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Trees</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kL1Ow0AQhE8IJELgAegsUR_s7f3YV6IICJKlCBHqk-2sTSKwzZ1d8PacYwoaqp3im5nVMHYt4FYApHcBAFFxEJJbZQRXJ2whlJQclIXTo0aupIZzdhHCAQBkBrBgfNMmwzslr9QXvhj2XZu8jBSOou58svVESV60zVg0FC7ZWV18BLr6vUv29viwXa15vnl6Xt3nvJJCDLGnNEgKwVRAsYqq0hAaU6W1JqzQWl0bJeqMLOlSi8hokyHhbmczk5ZyyW7m3N53X9M77tCNvo2VTmiDkCotMVJipirfheCpdr3ffxb-2wlw0ypuXsXFVdy0ilPRg7MnRLZtyP9J_tf0A3UqYjg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Arnold, André</creator><creator>Michalewski, Henryk</creator><creator>Niwiński, Damian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141101</creationdate><title>On the Separation Question for Tree Languages</title><author>Arnold, André ; Michalewski, Henryk ; Niwiński, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-43b62e4206c0e000ecb6e266c7f5e2c2995f641f8e9e5b51e005682e2dd9867b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Computer Science</topic><topic>Set theory</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, André</creatorcontrib><creatorcontrib>Michalewski, Henryk</creatorcontrib><creatorcontrib>Niwiński, Damian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, André</au><au>Michalewski, Henryk</au><au>Niwiński, Damian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Separation Question for Tree Languages</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>55</volume><issue>4</issue><spage>833</spage><epage>855</epage><pages>833-855</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The non-separation result is also adapted to the analogous classes induced by weak alternating automata. To prove our main result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Π n and fails for Σ n -classes. The construction invented for words turns out to be useful for trees via a suitable game. It remains open if the separation property holds for all classes Π n of the index hierarchy for tree automata. To give a positive answer it would be enough to show the reduction property of the dual classes—a method well-known in descriptive set theory. We show that it cannot work here, because the reduction property fails for all classes in the index hierarchy.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00224-013-9461-4</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2014-11, Vol.55 (4), p.833-855
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_1562074532
source SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete
subjects Analysis
Automation
Computer Science
Set theory
Studies
Theory of Computation
Trees
title On the Separation Question for Tree Languages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Separation%20Question%20for%20Tree%20Languages&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Arnold,%20Andr%C3%A9&rft.date=2014-11-01&rft.volume=55&rft.issue=4&rft.spage=833&rft.epage=855&rft.pages=833-855&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-013-9461-4&rft_dat=%3Cproquest_cross%3E3432788141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562074532&rft_id=info:pmid/&rfr_iscdi=true