On the Separation Question for Tree Languages

We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2014-11, Vol.55 (4), p.833-855
Hauptverfasser: Arnold, André, Michalewski, Henryk, Niwiński, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the separation property fails for the classes Σ n of the Rabin-Mostowski index hierarchy of alternating automata on infinite trees. This extends our previous result (obtained with Szczepan Hummel) on the failure of the separation property for the class Σ 2 (i.e., for co-Büchi sets). The non-separation result is also adapted to the analogous classes induced by weak alternating automata. To prove our main result, we first consider the Rabin-Mostowski index hierarchy of deterministic automata on infinite words, for which we give a complete answer (generalizing previous results of Selivanov): the separation property holds for Π n and fails for Σ n -classes. The construction invented for words turns out to be useful for trees via a suitable game. It remains open if the separation property holds for all classes Π n of the index hierarchy for tree automata. To give a positive answer it would be enough to show the reduction property of the dual classes—a method well-known in descriptive set theory. We show that it cannot work here, because the reduction property fails for all classes in the index hierarchy.
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-013-9461-4