Photocatalytic Degradation of Trifluralin, Clodinafop-Propargyl, and 1,2-Dichloro-4-Nitrobenzene As Determined by Gas Chromatography Coupled with Mass Spectrometry

Phototransformation is considered one of the most key factors affecting the fate of pesticides. Therefore, our study focused on photocatalytic degradation of three selected pesticide derivatives: trifluralin (1), clodinafop-propargyl (2), and 1,2-dichloro-4-nitrobenzene (3). The degradation was carr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromatography research international 2014-12, Vol.2014, p.1-9
Hauptverfasser: Mir, Niyaz A., Khan, A., Muneer, M., Vijayalakhsmi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phototransformation is considered one of the most key factors affecting the fate of pesticides. Therefore, our study focused on photocatalytic degradation of three selected pesticide derivatives: trifluralin (1), clodinafop-propargyl (2), and 1,2-dichloro-4-nitrobenzene (3). The degradation was carried out in acetonitrile/water medium in the presence of titanium dioxide (TiO2) under continuous purging of atmospheric air. The course of degradation was followed by thin-layer chromatography and gas chromatography-mass spectrometry techniques. Electron ionization mass spectrometry was used to identify the degradation species. GC-MS analysis indicates the formation of several intermediate products which have been characterized on the basis of molecular ion, mass fragmentation pattern, and comparison with NIST library. The photocatalytic degradation of pesticides of different chemical structures manifested distinctly different degradation mechanism. The major routes for the degradation of pesticides were found to be (a) dealkylation, dehalogenation, and decarboxylation, (b) hydroxylation, (c) oxidation of side chain, if present, (d) isomerization and cyclization, (e) cleavage of alkoxy bond, and (f) reduction of triple bond to double bond and nitro group to amino.
ISSN:2090-3502
2090-3510
DOI:10.1155/2014/261683