Effect of Nonlinearity of the Phonon Spectrum on the Thermal Conductivity of Nanostructured Materials Based on Bi–Sb–Te

A theoretical investigation of the lattice thermal conductivity of nanostructured materials based on Bi–Sb–Te is presented. The calculations were based on relaxation time approximation and took into account both the real phonon spectra, obtained from first-principles by use of density functional the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2014-10, Vol.43 (10), p.3780-3784
Hauptverfasser: Bulat, L. P., Osvenskii, V. B., Pshenay-Severin, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical investigation of the lattice thermal conductivity of nanostructured materials based on Bi–Sb–Te is presented. The calculations were based on relaxation time approximation and took into account both the real phonon spectra, obtained from first-principles by use of density functional theory, and the anisotropy of phonon relaxation time. Phonon relaxation time data were determined from experimental values of the lattice thermal conductivity. The decrease of the thermal conductivity caused by the nanostructure was compared with results from calculations based on the linear Debye approach. Estimation showed that phonon boundary scattering can lead to a 55% decrease of thermal conductivity for a grain size of ~20 nm in the Debye approximation. Taking the nonlinearity of the acoustic phonon spectrum into account leads to a 20% larger decrease of the thermal conductivity because of boundary scattering. The reason is that consideration of the real phonon spectrum increases the relative contribution to thermal conductivity of acoustic phonons with low frequencies that are scattered more strongly at nanograin boundaries. Similarly, estimation of lattice thermal conductivity reduction as a result of phonon scattering by nanoinclusions gave an 8% larger decrease when the real phonon spectrum was used rather than the linear Debye approximation. For such a substantial decrease of lattice thermal conductivity, the effect of the optical phonons was estimated; it was shown that optical phonons can reduce the change of thermal conductivity as a result of grain boundary scattering by no more than 10%. Finally, the minimum lattice thermal conductivity was estimated to be 0.07 W/m K because of acoustic modes (0.09 W/m K in the Debye approach) and 0.14 W/m K when the contribution of optical modes was also taken into consideration.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-014-3162-x