Dry fractionation creates fractions of wheat distillers dried grains and solubles with highly digestible nutrient content for grower pigs1
Nutrient digestibility in distillers dried grains with solubles (DDGS) is limited by constraints such as particle size and fiber. Wheat DDGS contains more fiber than corn DDGS that may reduce its nutritional value in swine feeds. Dry fractionation may create DDGS fractions with low and high fiber co...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2014-08, Vol.92 (8), p.3416-3425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nutrient digestibility in distillers dried grains with solubles (DDGS) is limited by constraints such as particle size and fiber. Wheat DDGS contains more fiber than corn DDGS that may reduce its nutritional value in swine feeds. Dry fractionation may create DDGS fractions with low and high fiber content; therefore, wheat DDGS was processed sequentially using a vibratory sifter and gravity table. Sufficient material was obtained from 3 wheat DDGS fractions that differed in particle size from fine to coarse (Fraction A [FA], Fraction C [FC], and Fraction D [FD]). Five cornstarch-based diets were mixed that contained either 40% wheat DDGS, 30% FA, 30% FC plus 10% soybean meal (SBM), 30% FD plus 15% SBM, or 35% SBM. A sixth, N-free diet served to subtract basal endogenous AA losses and as control for energy digestibility calculations. Six ileal-cannulated barrows (29 kg BW) were fed 6 diets at 2.8 times maintenance for DE in six 9-d periods as a 6 ... 6 Latin square. Feces and ileal digesta were collected sequentially for 2 d each. Wheat DDGS FA, FC, and FD were 258, 530, and 723 ...m in mean particle size and contained 44.8, 39.3, and 33.8% CP and 29.1, 35.1, and 37.5% in NDF, respectively. The apparent total tract digestibility (ATTD) of GE was greater (P < 0.05) for SBM than wheat DDGS, was greater (P < 0.05) for FA than wheat DDGS, and did not differ between FC, FD, and wheat DDGS. The standardized ileal digestibility (SID) did not differ between SBM and wheat DDGS (P > 0.05) for most AA. The SID of Arg, Lys, Trp, and available Lys was greater (P < 0.05) for FD than wheat DDGS but was similar for FA, FC, and wheat DDGS and was greater (P < 0.05) for FD than SBM. The DE and NE value was greater (P < 0.05) for SBM, FA, and FC than wheat DDGS and did not differ between FD and wheat DDGS. The SID content of indispensable AA and available Lys was greater (P < 0.05) for SBM than wheat DDGS. The SID content of Ile, Leu, Met, Phe, and Val was greater (P < 0.05) for FA than wheat DDGS but did not differ for indispensable AA between FC and wheat DDGS. The SID content of His, Ile, Leu, Met, and Phe was lower (P < 0.05) for FD than wheat DDGS. In conclusion, dry fractionation creates DDGS fractions with a differing chemical composition. Fine particle fractions contain less fiber and more CP than coarse particle fractions, but their AA digestibility was lower, likely due to most of the solubles being fine particles that are more susceptible to AA damage than protein e |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2013-6820 |