Recency, consistent learning, and Nash equilibrium

We examine the long-term implication of two models of learning with recency bias: recursive weights and limited memory. We show that both models generate similar beliefs and that both have a weighted universal consistency property. Using the limited-memory model we produce learning procedures that b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-07, Vol.111 (Supplement 3), p.10826-10829
Hauptverfasser: Fudenberg, Drew, Levine, David K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the long-term implication of two models of learning with recency bias: recursive weights and limited memory. We show that both models generate similar beliefs and that both have a weighted universal consistency property. Using the limited-memory model we produce learning procedures that both are weighted universally consistent and converge with probability one to strict Nash equilibrium.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1400987111