The effects of paclitaxel on angiogenesis and lymphangiogenesis in the mouse cornea
Purpose Paclitaxel is a cytoskeletal agent that interacts with mitotic activity and inhibits microtuble disassembly. Consequently its antiproliferative effect has raised interest as antiangiogenic compound and is currently used in oncology and cardiology. Therefore we investigated the effects of pac...
Gespeichert in:
Veröffentlicht in: | Acta ophthalmologica (Oxford, England) England), 2014-09, Vol.92 (s253), p.0-0 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose Paclitaxel is a cytoskeletal agent that interacts with mitotic activity and inhibits microtuble disassembly. Consequently its antiproliferative effect has raised interest as antiangiogenic compound and is currently used in oncology and cardiology. Therefore we investigated the effects of paclitaxel on the angiogenesis and lymphangiogenesis process in a murine corneal neovascularization model.
Methods The mouse model of suture‐induced corneal neovascularization was used to assess the anti‐hemangiogenic and anti‐lymphangiogenic effect of paclitaxel by topical application, paclitaxel coated suture. As positive control we used dexamethason eye drops and as negative control – albumin eye drops. Application of eye drops was performed (3x/day) for 2 weeks beginning at the day of the suture‐treatment. Corneal neovascularization formation (angiogenesis and lymphangiogenesis) was quantified on corneal flatmounts stained with CD31 and LYVE‐1.
Results Topical applications of paclitaxel significantly inhibited the outgrowth of lymphatic vessels. In contrast, we did not detect an anti‐angiogenic effect of paclitaxel on corneal neovascularization, although the extend of corneal neovascularization was significantly reduced in animals treated with dexamethason (positive control).
Conclusion Topical application of paclitaxel inhibits lymphangiogenesis in the cornea. This finding suggests a potential role of paclitaxel in the treatment of corneal diseases. |
---|---|
ISSN: | 1755-375X 1755-3768 |
DOI: | 10.1111/j.1755-3768.2014.S074.x |