Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor

Further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Recently, we reported that plasminogen is crucial for bone repair through enhancement of vessel formation. However, the details of the role of tissue-type plasminogen activator (tPA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2014-08, Vol.307 (3), p.E278-E288
Hauptverfasser: Kawao, Naoyuki, Tamura, Yukinori, Okumoto, Katsumi, Yano, Masato, Okada, Kiyotaka, Matsuo, Osamu, Kaji, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Recently, we reported that plasminogen is crucial for bone repair through enhancement of vessel formation. However, the details of the role of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) in the bone repair process still remain unknown. Herein, we examined the effects of plasminogen activators on bone repair after a femoral bone defect using tPA-deficient (tPA(-/-)) and uPA-deficient (uPA(-/-)) mice. Bone repair of the femur was delayed in tPA(-/-) mice, unlike that in wild-type (tPA(+/+)) mice. Conversely, the bone repair was comparable between wild-type (uPA(+/+)) and uPA(-/-) mice. The number of proliferative osteoblasts was decreased at the site of bone damage in tPA(-/-) mice. Moreover, the proliferation of primary calvarial osteoblasts was reduced in tPA(-/-) mice. Recombinant tPA facilitated the proliferation of mouse osteoblastic MC3T3-E1 cells. The proliferation enhanced by tPA was antagonized by the inhibition of endogenous annexin 2 by siRNA and by the inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation in MC3T3-E1 cells. Vessel formation as well as the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were decreased at the damaged site in tPA(-/-) mice. Our results provide novel evidence that tPA is crucial for bone repair through the facilitation of osteoblast proliferation related to annexin 2 and ERK1/2 as well as enhancement of vessel formation related to VEGF and HIF-1α at the site of bone damage.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00129.2014