Quantitative magnetization transfer imaging of human brain at 7T

Quantitative magnetization transfer (qMT) imaging yields indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular to free pool size ratio (PSR), which has been shown to be correlated with myelin content in white matt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2013-01, Vol.64, p.640-649
Hauptverfasser: Dortch, Richard D., Moore, Jay, Li, Ke, Jankiewicz, Marcin, Gochberg, Daniel F., Hirtle, Jane A., Gore, John C., Smith, Seth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative magnetization transfer (qMT) imaging yields indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular to free pool size ratio (PSR), which has been shown to be correlated with myelin content in white matter. Because of the long scan times required for whole-brain imaging (≈20–30min), qMT studies of the human brain have not found widespread application. Herein, we investigated whether the increased signal-to-noise ratio available at 7.0T could be used to reduce qMT scan times. More specifically, we developed a selective inversion recovery (SIR) qMT imaging protocol with a i) novel transmit radiofrequency (B1+) and static field (B0) insensitive inversion pulse, ii) turbo field-echo readout, and iii) reduced TR. In vivo qMT data were obtained in the brains of healthy volunteers at 7.0T using the resulting protocol (scan time≈40s/slice, resolution=2×2×3mm3). Reliability was also assessed in repeated acquisitions. The results of this study demonstrate that SIR qMT imaging can be reliably performed within the radiofrequency power restrictions present at 7.0T, even in the presence of large B1+ and B0 inhomogeneities. Consistent with qMT studies at lower field strengths, the observed PSR values were higher in white matter (mean±SD=17.6±1.3%) relative to gray matter (10.3±1.6%) at 7.0T. In addition, regional variations in PSR were observed in white matter. Together, these results suggest that qMT measurements are feasible at 7.0T and may eventually allow for the high-resolution assessment of changes in composition throughout the normal and diseased human brain in vivo. ► Developed selective inversion recovery sequence for qMT imaging at 7T. ► Demonstrated reliability in the presence of large field variations. ► Resulting qMT parameters were consistent across a healthy cohort.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2012.08.047