Palaeomagnetism and magnetic fabrics of the Late Palaeozoic volcanism in the Castejón-Laspaúles basin (Central Pyrenees). Implications for palaeoflow directions and basin configuration

The Castejón-Laspaúles basin is one of the South Pyrenean basins of Late Variscan age that were strongly inverted during the Alpine compression (Late Cretaceous–Tertiary). It is mainly composed by Stephanian pyroclastic and volcanic deposits that reach a maximum thickness of ~ 500 m, and are overlai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological magazine 2014-09, Vol.151 (5), p.777-797
Hauptverfasser: IZQUIERDO-LLAVALL, ESTHER, CASAS-SAINZ, ANTONIO, OLIVA-URCIA, BELÉN, SCHOLGER, ROBERT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Castejón-Laspaúles basin is one of the South Pyrenean basins of Late Variscan age that were strongly inverted during the Alpine compression (Late Cretaceous–Tertiary). It is mainly composed by Stephanian pyroclastic and volcanic deposits that reach a maximum thickness of ~ 500 m, and are overlain by Permian and Triassic sedimentary units. A palaeomagnetic and magnetic fabrics (AMS) study was carried out in the Stephanian units, where the general absence of flow markers at the outcrop scale and the Alpine inversional structure prevent the straightforward reconstruction of the original volcanic and basinal configuration. Magnetic fabric data are not overprinted by Alpine internal deformation and can be interpreted in terms of primary volcanic and pyroclastic fabrics. The obtained directions coincide in the different sampled units, suggesting a constant source area during the development of the basin, and show the dominance of N–S-trending K1 axes that are interpreted to be parallel to flow directions. Palaeomagnetic data indicate the presence of a pre-folding palaeomagnetic component that is rotated clockwise by an average of +37° (±32°) with regards to the Stephanian reference. This rotation probably took place during Alpine thrusting since it is also registered by the overlying Triassic deposits. The whole dataset is interpreted in terms of basin development under sinistral transtension with two main fault sets: deep-rooted E–W-striking faults, probably responsible for magmatic emissions, and shallow-rooted, listric faults of N–S orientation.
ISSN:0016-7568
1469-5081
DOI:10.1017/S0016756813000769