Pulse transit time and blood pressure during cardiopulmonary exercise tests

Pulse transit time (PTT), the interval between ventricular electrical activity and peripheral pulse wave, is assumed to be a surrogate marker for blood pressure (BP) changes. The objective of this study was to analyze PTT and its relation to BP during cardiopulmonary exercise tests (CPET). In 20 pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2014-01, Vol.63 (3), p.287-296
Hauptverfasser: Wibmer, T, Doering, K, Kropf-Sanchen, C, Rüdiger, S, Blanta, I, Stoiber, K M, Rottbauer, W, Schumann, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulse transit time (PTT), the interval between ventricular electrical activity and peripheral pulse wave, is assumed to be a surrogate marker for blood pressure (BP) changes. The objective of this study was to analyze PTT and its relation to BP during cardiopulmonary exercise tests (CPET). In 20 patients (mean age 51+/-18.4 years), ECG and finger-photoplethysmography were continuously recorded during routine CPETs. PTT was calculated for each R-wave in the ECG and the steepest slope of the corresponding upstroke in the plethysmogram. For each subject, linear and non-linear regression models were used to assess the relation between PTT and upper-arm oscillometric BP in 9 predefined measuring points including measurements at rest, during exercise and during recovery. Mean systolic BP (sBP) and PTT at rest were 128 mm Hg and 366 ms respectively, 197 mm Hg and 289 ms under maximum exercise, and 128 mm Hg and 371 ms during recovery. Linear regression showed a significant, strong negative correlation between PTT and sBP. The correlation between PTT and diastolic BP was rather weak. Bland-Altman plots of sBP values estimated by the regression functions revealed slightly better limits of agreements for the non-linear model (-10.9 to 10.9 mm Hg) than for the linear model (-13.2 to 13.1 mm Hg). These results indicate that PTT is a good potential surrogate measure for sBP during exercise and could easily be implemented in CPET as an additional parameter of cardiovascular reactivity. A non-linear approach might be more effective in estimating BP than linear regression.
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.932581