A Fully-Integrated 77-GHz UWB Pseudo-Random Noise Radar Transceiver With a Programmable Sequence Generator in SiGe Technology

This paper describes a fully-integrated 77-GHz ultra-wideband pseudo-random noise (PRN) radar transceiver in a Silicon-Germanium technology. The transceiver is equipped with a programmable pseudo-random binary sequence (PRBS) generator, which is realized in a current-mode logic topology and can be o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-08, Vol.61 (8), p.2444-2455
Hauptverfasser: Ng, Herman Jalli, Feger, Reinhard, Stelzer, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a fully-integrated 77-GHz ultra-wideband pseudo-random noise (PRN) radar transceiver in a Silicon-Germanium technology. The transceiver is equipped with a programmable pseudo-random binary sequence (PRBS) generator, which is realized in a current-mode logic topology and can be operated with a clock rate of up to 4.25 GHz to enable a range resolution of 3.5 cm. The signal generation unit is simplified by including a frequency multiplier to create a 76.5-GHz carrier signal from a single 4.25-GHz input, that is also used as a clock for the PRBS generator. The transceiver achieves a phase noise of -105.3 dBc/Hz at 1-MHz offset frequency, a transmit output power of 6.2 dBm, a receive gain of 24 dB and an input-referred 1-dB compression point of -14 dBm. Track&hold circuits included in the receive path allow the use of a sub-sampling technique to reduce the IF data rate down to 1 MHz. Radar measurements with two PRN transceivers with different primitive polynomials were done concurrently to show a fundamental function of the programmable PRBS generator. Radar measurements with the PRN and the frequency-modulated continuous-wave (FMCW) principles show comparable results and the PRN radar proves to be a real alternative to the FMCW radar.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2014.2309774