Enhancing the Ride-Through Capability of DC-Link Voltage in NPC Multilevel Unified Power-Flow Controllers
Multilevel converters are attractive for unified power-flow controller (UPFC) applications, due to their high-voltage and power capability. Among multilevel topologies, the three-level neutral-point-clamped (NPC) converter allows back-to-back connection as the UPFC shunt and series converters. Besid...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2014-08, Vol.29 (4), p.1542-1550 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multilevel converters are attractive for unified power-flow controller (UPFC) applications, due to their high-voltage and power capability. Among multilevel topologies, the three-level neutral-point-clamped (NPC) converter allows back-to-back connection as the UPFC shunt and series converters. Besides the pulsewidth-modulated (PWM) multilevel control schemes, UPFCs require constant dc-link voltage and balanced voltages in the NPC multilevel dc capacitors. This paper proposes three main contributions to increase the dc-link voltage steadiness of multilevel UPFCs under line faults: 1) decoupled active and reactive linear power controllers; 2) real-time PWM generation; and 3) double balancing of dc capacitor voltages. A case study using part of the Portuguese transmission network is presented. The results show the effectiveness of the real-time PWM generation and dc-link capacitor voltages balancing included in NPC series and shunt converters to keep the dc-link voltage steadiness under line faults, overall enhancing the UPFC ride-through capability. |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2014.2326774 |